Стационарный случайный процесс - definitie. Wat is Стационарный случайный процесс
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Стационарный случайный процесс - definitie

Случайные процессы; Случайная функция; Траектория случайного процесса; Реализация случайной функции; Стационарный случайный процесс; Теория случайных процессов; Стационарные случайные процессы; Стохастический процесс; Стационарный процесс; Вероятностный процесс

СТАЦИОНАРНЫЙ СЛУЧАЙНЫЙ ПРОЦЕСС         
случайный процесс, вероятностные характеристики которого не меняются с течением времени.
Стационарный случайный процесс         

важный специальный класс случайных процессов (См. Случайный процесс), часто встречающийся в приложениях теории вероятностей к различным разделам естествознания и техники. Случайный процесс X (t) называется стационарным, если все его вероятностные характеристики не меняются с течением времени t (так что, например, распределение вероятностей величины X (t) при всех t является одним и тем же, а совместное распределение вероятностей величин X (t1) и X (t2) зависит только от продолжительности промежутка времени t2-t1, т. е. распределения пар величин {X (t1), X (t2)} и {X (t1 + s), X (t2 + s)} одинаковы при любых t1, t2 и s и т.д.).

Схема С. с. п. с хорошим приближением описывает многие реальные явления, сопровождающиеся неупорядоченными флуктуациями. Так, например, пульсации силы тока или напряжения в электрической цепи (электрический "шум") можно рассматривать как С. с. п., если цепь эта находится в стационарном режиме, т. е. если все её макроскопические характеристики и все условия, вызывающие протекание через неё тока, не меняются во времени; пульсации скорости в точке турбулентного течения представляют собой С. с. п., если не меняются общие условия, порождающие рассматриваемое течение (т. е. течение является установившимся), и т.д. Эти и другие примеры С. с. п., встречающиеся в физике (в частности, гео- и астрофизике), механике и технике, стимулировали развитие исследований в области С. с. п.; при этом существенными оказались также и некоторые обобщения понятия С. с. п. (например, понятия случайного процесса со стационарными приращениями заданного порядка, обобщённого С. с. п. и однородного случайного поля).

В математической теории С. с. п. основную роль играют моменты распределении вероятностей значений процесса X (t), являющиеся простейшими числовыми характеристиками этих распределений. Особенно важны моменты первых двух порядков: среднее значение С. с. п. EX (t) = m - математическое ожидание случайной величины X (t) и корреляционная функция С. с. п. EX (t1) X (t2)= B (t2-t1) - математическое ожидание произведения X (t1) X (t2) (просто выражающееся через дисперсию величин X (t) и коэффициент корреляции между X (t1) и X (t2); см. Корреляция). Во многих математических исследованиях, посвященных С. с. п., вообще изучаются только те их свойства, которые полностью определяются одними лишь характеристиками m и В (τ) (т. н. корреляционная теория С. с. п.). В этой связи случайные процессы X (t), имеющие постоянное среднее значение EX (t) = m и корреляционную функцию В (t2, t1) = EX (t1) X (t2), зависящую только от t2 - t1, часто называют С. с. п. в широком смысле (а более частные случайные процессы, все характеристики которых не меняются с течением времени, в таком случае называются С. с. п. в узком смысле).

Большое место в математической теории С. с. п. занимают исследования, опирающиеся на разложение случайного процесса X (t) и его корреляционной функции B (t2 -t1) = В (τ) в интеграл Фурье, или Фурье - Стилтьеса (см. Фурье интеграл). Основную роль при этом играет теорема Хинчина, согласно которой корреляционная функция С. с. п. X (t) всегда может быть представлена в виде

, (1)

где F (λ) - монотонно неубывающая функция λ (а интеграл справа - это интеграл Стилтьеса); если же В (τ) достаточно быстро убывает при |τ|→∞ (как это чаще всего и бывает в приложениях при условии, что под X (t) понимается на самом деле разность X (t) - m), то интеграл в правой части (1) обращается в обычный интеграл Фурье:

, (2)

где f (λ) = F'(λ) - неотрицательная функция. Функция F (λ) называемая спектральной функцией С. с. п. X (t), а функция F (λ) [в случаях, когда имеет место равенство (2)] - его спектральной плотностью. Из теоремы Хинчина вытекает также, что сам процесс X (t) допускает Спектральное разложение вида

, (3)

где Z (λ) - случайная функция с некоррелированными приращениями, а интеграл справа понимается как предел в среднем квадратичном соответствующей последовательности интегральных сумм. Разложение (3) даёт основание рассматривать любой С. с. п. X (t) как наложение некоррелированных друг с другом гармонических колебаний различных частот со случайными амплитудами и фазами; при этом спектральная функция F (λ) и спектральная плотность f (λ) определяют распределение средней энергии входящих в состав X (t) гармонических колебаний по спектру частот λ (в связи с чем в прикладных исследованиях функция f (λ) часто называется также энергетическим спектром или спектром мощности С. с. п. X (t)).

Выделение понятия С. с. п. и получение первых относящихся к нему математических результатов являются заслугой Е. Е. Слуцкого (См. Слуцкий) и относятся к концу 20-х и началу 30-х гг. 20 в. В дальнейшем важные работы по теории С. с. п. были выполнены А. Я. Хинчиным, А. Н. Колмогоровым, Г. Крамером, Н. Винером и др.

Лит.: Слуцкий Е. Е., Избр. тр., М., 1960; Хинчин А. Я., Теория корреляции стационарных стохастических процессов, "Успехи математических наук", 1938, в. 5, с, 42-51; Розанов Ю. А., Стационарные случайные процессы, М., 1963; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей. (Основные понятия. Предельные теоремы. Случайные процессы), 2 изд., М., 1973; Гихман И. И., Скороход А. В., Теория случайных процессов, т. 1, М., 1971; Хеннан Э., Многомерные временные ряды, пер. с англ., М., 1974.

А. М. Яглом.

Случайный процесс         
(вероятностный, или стохастический)

процесс (т. е. изменение во времени состояния некоторой системы), течение которого может быть различным в зависимости от случая и для которого определена вероятность того или иного его течения. Типичным примером С. п. может служить Броуновское движение; другими практически важными примерами являются турбулентные течения (См. Турбулентное течение) жидкостей и газов, протекание тока в электрической цепи при наличии неупорядоченных флуктуаций (См. Флуктуации) напряжения и силы тока (шумов) и распространение радиоволн при наличии случайных замираний (федингов) радиосигналов, создаваемых метеорологическими или иными помехами. К числу С. п. могут быть причислены и многие производственные процессы, сопровождающиеся случайными флуктуациями, а также ряд процессов, встречающихся в геофизике (например, вариации земного магнитного поля), физиологии (например, изменение биоэлектрических потенциалов мозга, регистрируемое на электроэнцефалограмме) и экономике.

Для возможности применения математических методов к изучению С. п. требуется, чтобы мгновенное состояние системы можно было схематически представить в виде точки некоторого фазового пространства (пространства состояний) R', при этом С. п. будет представляться функцией X (t) времени t со значениями из R. Наиболее изученным и весьма интересным с точки зрения многочисленных приложений является случай, когда точки R задаются одним или несколькими числовыми параметрами (обобщёнными координатами системы). В математических исследованиях под С. п. часто понимают просто числовую функцию X (t), могущую принимать различные значения в зависимости от случая с заданным распределением вероятностей для различных возможных её значений - одномерный С. п.; если же точки R задаются несколькими числовыми параметрами, то соответствующий С. п. X (t)={X1(t), X2(t),..., Xk (t)} называется многомерным.

Математическая теория С. п. (а также более общих случайных функций (См. Случайная функция) произвольного аргумента) является важной главой вероятностей теории (См. Вероятностей теория). Первые шаги по созданию теории С. п. относились к ситуациям, когда время t изменялось дискретно, а система могла иметь лишь конечное число разных состояний, т. е. - к схемам последовательности зависимых испытаний (А. А. Марков старший и др.). Развитие теорий С. п., зависящих от непрерывно меняющегося времени, является заслугой сов. математиков Е. Е. Слуцкого (См. Слуцкий), А. Н. Колмогорова и А. Я. Хинчина, американских математиков Н. Винера, В. Феллера и Дж. Дуба, французского математика П. Леей (См. Лей), швед. математика X. Крамера и др. Наиболее детально разработана теория некоторых специальных классов С. п., в первую очередь - марковских процессов (См. Марковский процесс) и стационарных случайных процессов (См. Стационарный случайный процесс), а также ряда подклассов и обобщений указанных двух классов С. п. (цепи Маркова, ветвящиеся процессы, процессы с независимыми приращениями, мартингалы, процессы со стационарными приращениями и др.).

Лит.: Марков А. А., Замечательный случай испытаний, связанных в цепь, в его кн.: Исчисление вероятностей, 4 изд., М., 1924; Слуцкий Е. Е., Избранные труды, М., 1960; Колмогоров А. Н., Об аналитических методах в теории вероятностей, "Успехи математических наук", 1938, в. 5, с. 5-41; Хинчин А. Я., Теория корреляции стационарных стохастических процессов, там же, с. 42-51; Винер Н., Нелинейные задачи в теории случайных процессов, пер. с англ., М., 1961; Дуб Дж., Вероятностные процессы, пер. с англ., М., 1956; Леви П., Стохастические процессы и броуновское движение, пер. с франц., М., 1972; Чандрасекар С., Стохастические проблемы в физике и астрономии, пер. с англ., М., 1947; Розанов Ю. А., Случайные процессы, М., 1971; Гихман И. И., Скороход А. В., Теория случайных процессов, т. 1-2, М., 1971-73.

А. М. Яглом.

Wikipedia

Случайный процесс

Случа́йный проце́сс (вероятностный процесс, случайная функция, стохастический процесс) в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или координаты.

Wat is СТАЦИОНАРНЫЙ СЛУЧАЙНЫЙ ПРОЦЕСС - definition